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A B S T R A C T   

This study introduces a mathematical model for an electronic circuit capable of emulating both spiking and 
bursting neurons. The circuit incorporates a memristor as the nonlinear element essential for generating excit-
able dynamics. Our demonstrations illustrate that the model’s solutions effectively capture the qualitative fea-
tures of circuit voltages and currents. Additionally, we provide interpretations of these qualitative characteristics 
in the context of the underlying dynamics of the system.   

1. Introduction 

Nerve cells within the nervous system, as well as muscle cells, are 
collectively referred to as excitable tissues, exhibiting intricate electrical 
behaviors. Indeed, their behaviors have been elucidated in terms of 
fundamental electric phenomena, and the equations that characterize 
them have formed the foundation for mathematical models utilized in 
theoretical neuroscience [1,2]. A notable endeavor has been the phys-
ical realization of electronic equivalent circuits that simulate excitable 
tissues—these devices are known as electronic neurons. The physical 
embodiment of these electronic circuits serves two primary objectives. 
Firstly, it enables the validation of the representational accuracy of 
models for excitable tissues, ensuring that the circuits emulate the be-
haviors of the tissues they intend to model. Secondly, it seeks to engineer 
circuits endowed with specific behaviors, facilitating information pro-
cessing in a manner analogous to natural processes [3]. This is partic-
ularly valuable for practical applications. A growing interest in these 
devices lies in the therapeutic potential of targeted modulation of 
electrical activity in the peripheral nervous system, entailing two tech-
nical challenges: the development of interfaces that enable long-term 
nerve control and monitoring, as well as the creation of compact, 
responsive devices capable of generating real-time stimuli. Electronic 
neurons are an innovative solution to address this latter challenge. 

Electronic neurons boast a substantial and diverse history. Certain 
circuits are designed to implement analog integrations of phenomeno-
logical models that describe the behavior of neuron membranes. These 
models commonly embody the membrane’s excitatory mechanisms, 
serving as electronic realizations of Hodgkin and Huxley’s theoretical 
membrane model [3]. Others concentrate on replicating the dynamic 
attributes of excitability. This is achieved through either the construc-
tion of analog integrators for dynamic equations that exhibit excitability 
[4], or by employing nonlinear devices that exhibit excitable dynamics 
[5]. 

Significant efforts are also dedicated to implement electronic neu-
rons in CMOS (Complementary metal-oxide-semiconductor) VLSI (very 
large-scale integration) technology [6], as miniaturization allows the 
fabrication of massive numbers of neurons [7,8]. However, this is done 
at the expense of flexibility, since the chip design may take several years. 
Moreover, miniaturization usually leads to spiking frequencies that are 
several orders of magnitude above that of biological neurons, which 
render the interfacing difficult. We may also mention, in this non- 
exhaustive introduction, the neuromorphic processors, such as Intel’s 
Loihi [9] and IBM’s TrueNorth [10], which essentially optimize digital 
computer architectures to simulate neural network systems. Finally, 
another promising approach is to employ programmable Field- 
Programmable Gate Arrays (FPGAs), capitalizing on the computational 
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prowess of these specialized processors [11,12]. Many of these en-
deavors have centered on simulating expansive arrays of excitable units. 

Here, we follow a very different approach that focus on the imple-
mentation of arguably the simplest electronic circuit realization of an 
excitable system. Recently, a novel spiking neuron model has been 
introduced, in which the memristor serves as the nonlinear element 
responsible for obtaining excitable dynamics [13]. A memristor, in 
simple terms, is a two-terminal resistive component that exhibits vari-
able resistance, which depends on the past applied voltage (or current), 
hence, that exhibits a hysteresis, or memory, effect. We employ a novel 
volatile memristor trivially formed by combining two conventional 
electronic components: a resistor (R) and a thyristor (T). The resistor is 
simply connected to the anode and to the gate of the thyristor. The two- 
terminal memristor device is obtained between the anode and the 
cathode [14]. The memristor has the function of a voltage-controlled 
switch, hence, by connecting a capacitor (C) in parallel one obtains a 
leaky-integrate-and fire neuron model. Indeed, each function is imple-
mented by each component: the C integrates, the R leaks and, critically, 
the T fires. Remarkably, this electronic neuron hence achieves the 
simplest possible implementation of the LIF neuron model. This basic 
circuit can be used as stepping stone to implement large variety of 
biologically relevant spiking behaviors [15]. A conceptually important 
point to realize is that our neuron model is actually defined through its 
hardware implementation—an electronic circuit. As we shall show here, 
its nonlinearities share the same nature with standard mathematical 
neuron models. Significantly, this paves a novel way for constructing 
intricate arrays of devices that should provide novel insights on the 
collective behavior of neural networks, i.e. to build neural network 
simulators of unprecedented simplicity and ultra-low cost. 

In this study, we present a mathematical model for the circuit and 
demonstrate that its solutions can capture the qualitative aspects of 
circuit voltages and currents. Furthermore, we interpret these qualita-
tive characteristics in terms of the underlying dynamics of the problem. 

2. The model  

1. The electronic neuron 

The Memristive Spiking Neuron model we will be examining is an 
electronic neuron comprised of two distinct blocks. The first one is 
composed of a capacitor connected to a memristor, which realize the 
basic LIF model of a regular (i.e. tonic) spiking neuron that we described 
above [13]. The second block simply consists of a capacitor in parallel 
with a resistance and extends the LIF model to generate bursts of spikes 
[14]. If we ignore for the moment the second block, we may understand 
the simple mechanism of spike generation of the first block. Injecting 
current into the shared terminal of the capacitor and the memristor, 
which is initially in its “open” (i.e. high resistance) state, causes the 
former to charge. When the potential in the capacitor reaches a 
threshold value of Vth, there is a dramatic decrease of the resistance of 
the memristor, as in the closure of an electric switch, which results in a 
current spike due to the sudden discharge of the capacitor. 

The role of the second block is to introduce an additional temporal 
scale in the model: τs = RsCs.

Our two-block electronic neuron, termed Memristive Spiking 
Bursting Neuron (MSBN) model, can be interpreted as a two- 
compartment model, with one compartment representing the dendrite 
and the other representing the soma (Fig. 1). It is somewhat inspired by a 
well-known biological bursting neuron model introduced by Pinsky and 
Rinzel [16], that consists of two compartments coupled by a conduc-
tance denoted as gc. In the MSBN model, the two compartments are 
directly connected, akin to the limit of strong electrotonic coupling 
(large gc) in the Pinsky and Rinzel model. 

Remarkably, this seemingly uncomplicated circuit manifests intri-
cate dynamic behavior, characterized by four distinct regions displaying 
varying spiking patterns and two restful zones. These patterns arise from 

the interplay of the input current (Iin) and the time constant (τs) of the 
soma compartment. When the value of τs is low, a phenomenon known 
as Tonic Spiking (TS) occurs. Through the control of the parameters of τs 
and Iin, we can elicit tonic spikes with differing intensities, durations, 
and intervals, as illustrated by the three red plots on the right side of the 
figure. This phenomenon is expected due to the relatively short time 
constant in the soma, compared to the dendritic components. In other 
words, the capacitor Cs is small, hence charging very fast, resulting in a 
negligible perturbation to the emergence of the Tonic Spiking behavior 
that we described before. 

As the value of τs is gradually increased, it becomes relevant with 
respect to the discharge time-scale (τspike), hence can no longer be 
perceived as a minor perturbation. This leads to the manifestation of 
Fast Spiking (FS) behavior, distinct from the TS, and found in the large 
blue region that dominates the phase diagram of Fig. 1 at large τs. It is 
interesting to note that this novel spiking behavior also brings about two 
additional forms of dynamical behavior, which are intrinsic bursting and 
designated as IB1 and IB2 (green and yellow regions in the phase dia-
gram). We may note that these two types of bursting emerge corre-
spondingly at the onsets of excitability of the Fast Spiking state for both, 
low and high input current (Iin). It is noteworthy that IB1 exhibits bursts 
that, during non-firing periods, exhibit prolonged proximity to the lower 
fixed point. Conversely, IB2 displays a similar pattern around the upper 
fixed point. 

Similarly, the identical principle applies to the Fast Spiking behavior, 
wherein altering parameters shifts the reference point for oscillations. 
This change is evident in the blue panels on the right. Analogously, 
distinct burst durations and intervals emerge for IB1 and IB2 due to 
variations in parameters. This is visually represented in the right panel, 
where yellow and green depict the characteristics of IB1 and IB2. 

Despite the circuit’s simplicity it has a remarkably rich emergent 
dynamical behavior. This is due to a variety of non-linearities in 
competition and their ensuing bifurcations. The goal of the present work 
is to introduce a mathematical description of the circuit that allows for 
the systematic exploration and understanding of those dynamical in-
stabilities. This study is a necessary starting point to envision the 
exploration and rationalization of the even richer collective behavior 
that may emerge from networks of coupled MSBNs.  

2. Equations of the MSBN model 

Constructing a comprehensive set of equations for this model entails 
two essential components. The first component involves a set of 
Kirchhoff equations, which account for both charge conservation and 
the requirement of zero net voltages along closed paths within the cir-
cuit. The second component necessitates a dynamical model that de-
scribes the transition of the circuits to either of the two resistive modes 
of the memristor. 

To effectively capture this dynamic process, we propose a simple 
method of rapid convergence toward either a state of high or low 
resistance. To describe a system with memory, we need a dynamical 
system capable of exhibiting diverse behaviors based on distinct initial 
conditions within a range of voltages. This intricate behavior can be 
encapsulated by a vector field resulting from the computation of the 
universal unfolding of a Pitchfork bifurcation [17]: 

I′
m = Im*(Vm − a)+ b*I2

m − c*I3
m + d (1) 

In this unfolding, two terms, parametrized by d, b, introduce asym-
metry that breaks the reflection symmetry. As long as d < b3/27, the 
system exhibits bistability. For small voltages, regardless of the initial 
current, the system converges to a regime of high resistance (resulting in 
an attracting state characterized by an extremely low current). 
Conversely, under large voltages, the resistance experiences a substan-
tial reduction (leading to dynamics that result in an attractor with high 
current values). Notably, a captivating phenomenon occurs within an 
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Fig. 1. The experimental measurements of the electronic neuron. The device naturally reproduces a set of behaviors that cover the spectrum of dynamical processes 
found in nature. In a), we display a basic two compartments model for a neuron, whose dynamics can be reproduced by the device shown in b), where the nonlinear 
device is a thyristor. In c we show different regions of the parameter space where different behavior was reported. Typical time series found in each of the regions are 
displayed in d). The color used in the time traces matches the color of the region. The figure is adapted from [14], and therefore the criterium used to classify the 
solutions is the one described in that reference. Basically, the color gray indicates quiescent states (i.e. fixed points), blue for fast periodic solutions, periodic se-
quences of spikes are indicated with red, and blue and green are used for bursting solutions. The difference between those solutions refers to how much time the 
bursting solutions spend close to the on or the off state. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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interval of voltages across the memristor—within this interval, the 
system converges to either a high or low resistance regime based on the 
initial condition. This phenomenon contributes to the device’s charac-
teristic memory. The selection of problem parameters ensures that the 
convergence to either regime transpires significantly faster than any 
other dynamical process within the problem. 

The principle of current conservation at the junction of the branches 
holding Rs and Cs gives rise to the following equation: 

V′
out =

1
Cs

*
(

Im −
Vout

Rs

)

(2)  

while the zero-sum rule for the voltages allow us to relate the voltage 
across the memristor to the other variables of the problem: 

V′
m =

Iin

Cm
− Im*

(
1

Cm
+

1
Cs

)

+
Vout

RsCs
(3) 

The Eqs. (1)–(3) constitute a dynamical system capable of displaying 
rich and diverse solutions. In the following section we describe some of 
interesting dynamics interpretable in terms of neural spiking and 
bursting behavior. 

3. Results 

The Eqs. (1)–(3) describe the dynamics of our model. Being a 3d 
dynamical system, it can display a variety of attractors, from fixed point, 
periodic solutions, quasiperiodic behavior and even chaos. Given a set of 
parameters (a, b, c, d,Cs,Cm, τs, Iin), we can numerically integrate the 
temporal evolution of the state of the system (Vout ,Vm, Im) by specifying 
the initial conditions (Vout(0) ,Vm(0) , Im(0) ). Due to the system’s hys-
teresis nature, qualitatively different solutions emerge for different 
initial conditions in certain parameter space regions. We examined the 
solutions across a grid of τs and Iin values, with a focus on two pivotal 
aspects. The first aspect—topological in nature—pertains to the peri-
odicity of the solution. This periodicity is evaluated by counting the 
number of crossings with a Poincaré section (V′out = 0, taking the 
positive-oriented flow direction crosses). To facilitate a comparison of 

our dynamical system’s analysis results with previous findings on the 
electronic neuron, we introduced a bursting coefficient. This coefficient, 
indicative of the proportion of time during which the solution remains 
above the median amplitude, enables meaningful comparison. 

The numerical simulations used to generate Fig. 2 were carried out 
with (a, b, c, d,Cs,Cm) = (10,4.85,0.594,0.1,0.1, 10) and parameters τs 
and Iin sampled from a 1200×600 grid with τs ϵ (0.01,0.35) and 
Iin ϵ (0.01,3.0). The grid displayed in the figure was integrated “up-
ward”, that is, each numerical simulation was initialized with initial 
conditions (Vout(0) ,Vm(0) , Im(0) ) equal to (Vout(T) ,Vm(T) , Im(T) ),
taken from the prior run for the same τs and the immediately lower Iin 
(except for the bottom row of the grid, where integration commenced in 
proximity to the stable fixed point associated with the Quiescent State), 
being T the total integration time. 

Upon examination of Fig. 2, we discern the identification of two 
distinct and well-defined regions that correspond to 1-periodic solu-
tions. The blue region mirrors the experimental Fast Spiking behavior 
showcased in Fig. 1. Conversely, the red region illustrates slower solu-
tions characterized by extended periods, akin to the Tonic Spiking 
behavior. In addition, we extend this analysis to include 2, 3 and 4-pe-
riodic solutions whose growth rates differ significantly from the decre-
ment rates. Specifically, we consider those solutions for which the time 
spent in the growth phase is equal to or less than 10 % of T. 

Moreover, a correspondence emerges between the computationally 
derived bursting solutions and the depicted IB1 and IB2 behaviors in 
Fig. 1. Solutions corresponding to a low bursting coefficient (indicated 
by greener shades) align with patterns wherein bursts of brief spikes 
alternate with periods of low activity, akin to ‘silences.’ In contrast, 
solutions corresponding to a high bursting coefficient (indicated by 
yellower shades) are better described by prolonged periods of high 
amplitude, with spikes occurring before transitioning back to the low 
amplitude phase. 

By studying the equations that describe the dynamics of the device, 
we gain insight into the type of behavior that can be anticipated when 
large arrays of these units are interconnected. Communication between 
these units can be categorized into electrical and chemical synapses. 
These two types of synapses fundamentally differ in their transmission 

Fig. 2. The numerical simulations used to generate Fig. 2a were carried out with (a, b, c, d,Cs,Cm) = (10,4.85, 0.594,0.1,0.1, 10), τ ϵ (0.01,0.35) and Iin ϵ (0.01,3.0), 
within a grid of 1200×600. The left panel separates the parameter space in regions according to the n-periodicity of the solutions, it also employs a distinctive color 
scheme: gray represents the Quiescent state, a gradient spanning from blue to red signifies the period of 1-periodic solutions and the 2, 3 and 4-periodic solutions 
whose derivative spends less than 10 % in the positive range, and a gradient from green to yellow indicates the bursting coefficient for the other cases. The right 
panels are representative plots of Vout for different zones of the grid. The color is equivalent to the one in the left panel from which the values of τs and Iin were 
sampled. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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mechanisms. In electrical synapses, intercellular channels known as gap 
junctions exist between pre- and postsynaptic membranes, allowing 
current to flow passively. This flow of ionic current occurs through the 
gap junction pores, enabling current to move from one neuron to 
another. The typical source of this current is the local potential differ-
ence generated by the action potential. For these specific diffusive 
couplings, the model that describes the dynamics belongs to what is 
known to be the class II, according to the Master Stability Function 
approach [18,19]. Class II systems are of particular importance, as they 
can be used as units of a network able to perform parallel computation. 
Indeed, from one side it is guaranteed that, given whatever connection 
structure in the network, complete synchronization will be always stable 
for coupling strengths larger than a given threshold. From the other side, 
given any specific (desired) cluster of units it is guaranteed that a 
network structure exists where the units of such cluster are capable of 
synchronizing, also independently on the dynamics of any other units 
not belonging to the cluster. This latter property implies that one can 
always architecture a topology of connection for which desired parallel 
clusters synchronize at will [20]. 

In contrast, when dealing with chemical synapses, the challenge of 
unraveling the global dynamics of a large set of coupled excitable units 
remains open. Notable progress has been made in understanding how 
collective dynamics emerge as phase oscillators are coupled, even for 
non-diffusive coupling [21]. However, for three-dimensional systems 
that exhibit complex dynamics at the level of elementary units, the 
problem remains an ongoing challenge. 

4. Conclusions 

In recent times, an electronic device has been introduced that 
showcases dynamic regimes in which the time series of one of its vari-
ables resembles a diverse array of biologically significant features, akin 
to those exhibited by neurons in the nervous system. These regimes 
encompass periodic spiking, bursting, and excitable quiescent states. 
Throughout history, there exists a wealth of electronic devices capable 
of analogically integrating equations that describe the electric properties 
of nervous system tissues. However, in this instance, a simple nonlinear 
memristive device coupled with a few passive elements serves as the 
cornerstone for generating a wide spectrum of behaviors. In the course 
of this work, we formulated the equations that define such a unit and 
successfully demonstrated that their solutions aptly capture the 
dynamical characteristics of the electronic neuron. 

By simplifying the circuit to its minimum complexity and identifying 
the fundamental dynamical elements required to replicate the solutions, 
we embark on an intriguing avenue to potentially scale the production of 
electronic neurons. In this context, we recognize the relevant role of the 
concept of memristance, which provides the switch-like functionality 
that is at the root of the LIF neuron model. Our present approach is based 
on discrete, conventional electronic components, however our this can 
be a considered as the initial steps of an ambitious novel road map for 
the future hardware fort artificial intelligence. In fact, quite remarkably, 
the memristor device at the heart of the present neuron model can be 
realized by a type of quantum materials showing a fascinating insulator 
to metal transition, which are known as Mott insulators. Those materials 
are receiving a great deal of attention for their potential neuromorphic 
functionalities [22], as their theoretical understanding and reliable 
fabrication remains an open challenge [23–25]. Overcoming those 
challenges and understanding the dynamical behavior of neuron models 
based on memristors will paved the way for the implementation of novel 
hardware for artificial intelligence in the 21st century and beyond. 
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