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Computational model for vocal tract dynamics in a suboscine bird
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In a recent work, active use of the vocal tract has been reported for singing oscines. The reconfiguration of
the vocal tract during song serves to match its resonances to the syringeal fundamental frequency, demonstrat-
ing a precise coordination of the two main pieces of the avian vocal system for songbirds characterized by
tonal songs. In this work we investigated the Great Kiskadee (Pitangus sulfuratus), a suboscine bird whose
calls display a rich harmonic content. Using a recently developed mathematical model for the syrinx and a
mobile vocal tract, we set up a computational model that provides a plausible reconstruction of the vocal tract
movement using a few spectral features taken from the utterances. Moreover, synthetic calls were generated
using the articulated vocal tract that accounts for all the acoustical features observed experimentally.
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I. INTRODUCTION

In the already long and well-established literature of bird-
song, attention has been focused on the generation of sound
by the avian vocal organ. This organ, the syrinx, consists of
tissue membranes that can be set into oscillatory motion by
the passage of air flow. Important progress has been made by
mathematical models of the syringeal dynamics, accumulat-
ing strong evidence that points toward the idea that complex
sounds may be a consequence of the syringeal structure
[1,2]. Such ideas may have consequences on diverse biologi-
cal fields, especially on animal communication, where com-
plex vocal patterns do play a major role as behavioral traits.
However, little is known about the importance of a tunable
vocal tract coupled to the bird syrinx in the generation of
complex sounds. In the field of birdsong, this lack of atten-
tion could be due in part to the fact that many species are
characterized by the tonality of their songs, with minimal, if
any, spectral richness.

Interestingly, a recent work supported by x-ray cinema-
tography showed a very precise tuning of the vocal tract to
the rapid changes in the fundamental frequency in the song
of the Northern Cardinal (Cardinalis cardinalis) [3,4]. More-
over, even for birds like the White-Throated Sparrow (Zonot-
richia albicollis) whose song consists of a series of almost
constant frequency notes, the oropharyngeal cavity and cra-
nial end of the esophagus maintain a relatively constant vol-
ume, corresponding to a major resonance following the fun-
damental frequency [5].

In this work we analyze a particular sound produced by
the Great Kiskadee (Pitangus sulfuratus) known as call. This
short acoustic production is typically emitted by birds under
some kind of stress, presumably carrying information to
other members of the community. The case is interesting
because, unlike many species belonging to the oscine subor-
der, the sonogram reveals that this suboscine produces
sounds of rich spectral content. For us humans, the genera-
tion of voiced sounds rests essentially on the possibility of
altering the vocal tract configuration, enhancing some fre-
quencies out of a spectrally rich signal giving rise, for in-
stance, to the different vowels. The question of whether or
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not these birds use the vocal tract as an active filtering device
to alter the rich signal produced by their syrinx will be ad-
dressed here.

This work is organized as follows. In Sec. II we present
and characterize the calls produced by the Great Kiskadee.
Section III is devoted to the models for song generation: we
analyze a recently developed dynamical model for the syrinx
[2,6] in combination with a model for a mobile vocal tract. In
Sec. IV we set up a computational technique based on a
genetic algorithm and a least-cost search algorithm in order
to reconstruct the anatomical parameters of the moving vocal
tract, using spectral features of the calls. Complete synthetic
calls for this bird are shown in Sec. V, along with the con-
clusions of this work.

II. ACOUSTIC ANALYSIS OF THE CALLS

The Great Kiskadee is a medium size American bird char-
acterized by its nearly fixed three syllable song (from which
the onomatopoeia kis-ka-dee). These birds also produce other
sounds, notably the calls, which are very simple stereotyped
continuous sounds of about 0.7 s long, as the ones shown in
Fig. 1. Calls are produced by the birds under stress, presum-
ably as a sign of the proximity of danger. Speculatively, it
could be advantageous for these calls to be constrained to
specific spectral bands in order to unmask the uttered sounds
from noisy environments, optimizing the transfer of acousti-
cal energy, as observed in other biological systems [7,8]. In
that case, it is expected that the vocal tract, considered as a
spectral filtering device, would play a central role.

Inspired from these ideas, we created a database of 45
calls recorded in several sessions within 1 month of four
wild-caught Great Kiskadees. The birds were kept in acous-
tical isolation while recorded with a TAKSTAR SGC 568
microphone and filmed with a Sony HDR-SR11/SR12 HD
camera. In all cases we observed very stereotyped sounds,
characterized by a fast increase in the fundamental frequency
followed by a plateau and terminated by a rapid decrease in
the fundamental frequency (see Fig. 1). We also performed
direct anatomic measures on the anatomy on the birds, anes-

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.82.031906

M. F. ASSANEO AND M. A. TREVISAN

0 )
5% Sg /"‘“
8t St \
83 83 j il
> > \ N
gs g NV gz \ NS
g2/ O D JER R A R Fad
£ £3 S
o9 o9 e
Sa Sa £ = ~§
o o a
v w0 T Time (s) 0.6
. TiT: T PT T
T, T T T 1:2: 3 ' 4 5
1.2 3 v 4 15 9.6|. | e .
L T—— ! L o Iy '
A A BN g A
e A v o AN
ko N P 1 6N
i S N Hg v N >
LA A ™~ A i A A £
18 : i3 L 8! W3 g
il ) i i SRSt i 3
- E——— H PR N i 1 £
N | : : N | . ! %
Ty : b, Tl ! N 5
i i B~ b B8
o . g . o . 1 wn
s N2 g T2 B3
2 ; is s 200 : N N
o H H H \ T 5 =
gl el | gl <l g
: Y Yy oo 7 ' S ]
i H .& " ' Y =
I 4 Vo . 4
AR —! - —ey 1
o3lii P, g3lii -
0 Time (s) 0.6 0 Time (s) 0.6
A B

FIG. 1. (Color online) Sound time series envelope, sound inten-
sity (solid line), and reassigned spectrograms of two different types
of calls. (A) An example of a call that does not present a boost in
the total sound intensity, observed in 20% of the analyzed calls
(type A). (B) A call presenting an overshoot in total sound intensity,
produced in roughly the 80% of the utterances of each bird (call of
type B). Arrows indicate the emphasized frequencies (darker traces)
found systematically in all the calls of our database [1: 2.58 kHz; 2:
5.08 kHz; 3: 7.50 kHz; 4: 2.83 kHz; 5: 4.39 kHz; 6: 8.43 kHz; 7:
3.20 kHz (present only in calls of type B); 8: 7.50 kHz; 9: 9.00
kHz]: £0.04 kHz. Other emphasized frequencies are found at the
beginning of the calls, as a reflection of resonances 1-6 with respect
to a vertical axis passing through the highest value of the funda-
mental frequency, and shrunk into the initial fast upsweep, and
therefore not visible in the figure.

thetized with intramuscular injections of ketamine/xylazine
(the protocol can be found elsewhere [2]).

The spectral representation shown in the lower panels of
Fig. 1 is not the sonogram, which is the standard spectral tool
in birdsong, but a representation described in [9,10] called
reassigned spectrogram. Given the complex Gabor transform
X(t, 0)=|x(t, )],

Xt w) = f x(7)elt = D2 gioli=7) g

the sonogram is computed using the modulus |x(¢, )|, while
the reassigned spectrogram is derived from phase informa-
tion, w;,,=d¢/dt and t,,,=t—Jd¢/dw. Briefly, there exists a
T
transformation 7, (w,t)—(w,,,,%;), such that in the new
variables a signal will have optimum precision and reso-
Iution in the spectral domain, in the sense that a given fre-
quency trace is represented by a line of zero thickness (infi-
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nite precision), and different traces will not interfere with
each other if they are further apart than the Fourier uncer-
tainty, which corresponds to the optimal spectral resolution.
This representation allows an accurate detection of slight
variations in spectral intensity. In fact, short dark traces can
be identified within the harmonics of the call, marked by
arrows in Fig. 1. These traces are much harder to visualize in
the sonogram because of the finite precision of the fast Fou-
rier transform.

Despite their stereotyped spectral shape, the calls of the
birds can be easily classified in two subsets [Figs. 1(A) and
1(B)], depending on the presence or absence of an overshoot
in the total sound intensity, roughly located in the middle of
the call, as seen in the higher panels of Fig. 1. Each bird
produces this overshoot in about 80% of its calls (that we
labeled as type B) that also display an emphasized spectral
intensity in the first harmonic (labeled 7 in Fig. 1), features
that are absent in the other 20% of the calls (type A), char-
acterized by a slightly lower fundamental frequency. In the
next sections we will set up a minimal model of the avian
vocal system that accounts for all the acoustic features found
in the experimental records of the calls, allowing us to give a
plausible explanation for the existence of both acoustic be-
haviors.

II1. SYRINX AND VOCAL TRACT MODELS

The Great Kiskadee (Pitangus sulfuratus) presents a tra-
cheosyringeal syrinx with two independently controlled
sound generators, each of which consists of a pair of oscil-
lating labia. One of the simplest models that captures the
physical principle of energy transfer from the airflow to the
tissue membranes is based on the observation of surface
waves traveling upward through the labia during the oscilla-
tory cycle, presenting a syrinx of convergent profile when the
labia move away from each other and a syrinx of divergent
profile in the closing semicycle. To account for these obser-
vations, an equation of motion for the midpoint displacement
x of the labia was proposed in [2,6], which can be written as

A+27x

)
apg) + X+ 7X

where k=k(x)=k;+k,x*> and B=B(x,%)= B+ Brx>+ B;i are
first-order nonlinear elastic and dissipative coefficients, re-
spectively. The last term is the intraglottal pressure acting on
the labia that depends on the air sac pressure p, and the
profile of the syrinx, with g, as the labial area, ay, and A as
geometric parameters of the syringeal profile, and 7 as a
characteristic time of the tissue wave [1,11]. The labial
movement is the source of pressure perturbations at the input
of the vocal tract, p;(x,x)=1\p,/px [2,12], with p as the air
density.

In order to complete the sound production process, we are
now ready to incorporate a computational vocal tract model
to the output of the syrinx. Vocal tract effects can be of two
types: filtering and coupling effects. In this work we will
consider only the filtering effects, according to the source-
filter theory [1,11].

(1)

mx=—kx— Bx+ap;
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From the theory of sound propagation in narrow tubes
[13], a number a computational models of the vocal tract
were studied in the literature [3,14,15]. The sound wave
meeting the interface between tubes n and n = 1 will split up
into a reflected and a transmitted wave, characterized by co-
efficients r, ,+1=a,/a,~, and t, ,+=1-r, ,+, respectively.

The sound resulting from the pressure traveling through a
system of four tubes can be written as

a(t) = pit) + byt - 1),
by(t) =rypa(t — 1) + 1 1¢(t = 7),
bAt) =t ra(t— 1) + 1y 1¢,(t = 7),
cp(t) =rasb At = 1) + 13,d)(t = 73),
clt) =ty 30t = 1) +r3,d,(t = 73),
dy(t) = ”3,4Cf(f = 73) + 1438t = 7y),
di(t) = t34c [t = 73) + 14 36,(t = 74),

ep(t) =r dft—1y), (2)

where 7, is the time it takes to the sound to travel along the
nth tube at speed ¢, 7,=[,/c, and r, is the reflection coeffi-
cient at the interface with the atmosphere. When supplied
with a time series of air sac pressure p, and time varying
parameters a,, and [, for the vocal tract, the model of Egs. (1)
and (2) is capable of generating synthetic sounds propor-
tional to d/(1).

From the complete mathematical model for sound produc-
tion and the analysis of the reassigned spectra calculated
from the calls, we will assume the following:

(1) The frequencies at which a harmonic displays sudden
short traces of high spectral intensity will be considered reso-
nances of the vocal tract. This assumption is supported by
numerical simulations of the syrinx model. In a recent work,
the syrinx model was used to successfully synthesize bird
sounds when driven by experimental records of air sac pres-
sure p, recorded from singing Kiskadees [2,6]. Driving Eq.
(1) with a varying air sac pressure p,, we found that higher
values of p, enhance the spectral intensity of every harmonic
of the acoustic pressure p;. Moreover, the relative intensities
of the different spectral components of p; hold almost invari-
ant for different values of p,. According to this, variations of
air sac pressure affect the complete set of harmonics, enhanc-
ing or attenuating them as a whole. Therefore, when a single
harmonic suddenly increases its spectral intensity, we assume
that it coincides with a resonance of the vocal tract. The
same applies to a subset of the harmonics (as indicated, for
instance, by arrows 4—6 in the time frame T,; Fig. 1).

(2) The Great Kiskadee articulates the vocal tract while
uttering the calls. The resonant frequencies of a narrow con-
tinuously deformed open-closed tube are determined by its
geometrical properties. In particular, the maximum number
of resonances can be estimated using a uniform tube of the
same length, while the specific resonant values are deter-

PHYSICAL REVIEW E 82, 031906 (2010)

mined by its cross-section departures from the uniform tube
[14,15].

The simplest model for a vocal tract is then a uniform
tube of length L with closed-open endings corresponding to
the syringeal (glottal) exit and the beak (mouth) for birds
(humans). Such a quarter-wave tube presents resonances at
fi=Qk=1)c/4L (ke N-,), with ¢~340X10° mm/s, the
speed of sound.

Using L~90 mm, we can approximate the number of
resonances of a vocal tract for a medium size bird like the
one examined here. We get f,~ (2k—1) X 0.94 kHz. There-
fore, within the bandwidth 0=f=10 kHz, we expect to find
at most five resonances (fg~ 10.39 kHz), independently
from the specific shape of the vocal tract. Numerical simu-
lations using n=2 to n=20 tubes of different shapes and a
total length of L~90 mm display three to five resonances in
that bandwidth.

However, in Fig. 1 we recognize eight (nine) resonances
for calls of type A (type B), as we would observe in much
larger vocal tracts of around 180 mm long, like the human
[14,15]. We interpret this as a signature of a moving vocal
tract such that, for a given time frame, a maximum of five
resonances will be found, corresponding to a specific vocal
tract configuration of L~90 mm. Following Fig. 1, we con-
sider a time interval including resonances 7-9 for the higher
fundamental frequencies (73), then another interval associ-
ated with resonances 4-6 (Ty), and a final interval that in-
cludes resonances 1-3 (Ts).

In addition to the resonances shown in Fig. 1, the reas-
signed spectrograms display six more resonances that are not
marked in Fig. 1. These resonances correspond to a sym-
metrical reflection of the resonances 1-6 with respect to a
vertical axis located at the higher fundamental frequency
value and concentrated at the beginning of the call. There-
fore, we will associate the complete set of resonances of the
type B call to five time intervals: T,—(1,2,3), T,
—(4,5,6), T;—(7,8,9), and again T,—(4,5,6) and T;
—(1,2,3). In the next section, we set up an algorithm that
allows us to extract vocal tract parameters a, and /,, from the
experimental sound recordings.

IV. PARAMETER FITTING

Now we face the following problem. Take, for instance,
the call of type A, whose fundamental frequency is slightly
lower than the fundamental frequency of the call of type B.
Note that, if the resonance marked as 7 in the call of type B
was present in the call of type A, it would lie outside of the
frequency range of its first harmonic and, consequently, we
cannot conclude that this resonance (or others in between the
harmonics) are absent from the vocal tract. Therefore, due to
this lack of spectral information, many different tube con-
figurations, as calculated from Eq. (2), will succeed in
matching the experimental spectral resonances. Despite the
apparent contradiction, this overexpression of tube configu-
rations for each time frame can be useful in the reconstruc-
tion of the moving vocal tract, provided we add the biologi-
cally reasonable constraint of “minimal anatomical effort,”
i.e., by minimizing the variations of the vocal tract shape
along the call.
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From a computational point of view, both the problem of
generating a population of compatible vocal tracts for each
frame and the problem of finding the lower anatomical effort
between them can be tackled. To solve the first one, we set
up a genetic algorithm to explore the vocal tract configura-
tions.

A genetic algorithm is an optimization procedure inspired
by biological evolution. A caricature of natural selection con-
sists of making the most adapted individuals of a species
prevail in reproduction, generating offspring that mixes the
genetic information of their parents and changes it at random
(using the genetic operators of crossover and mutation, re-
spectively). This double mechanism that privileges good ge-
netic information and explores new possibilities in reproduc-
tion is a very efficient way to search the genetic space for the
best adapted individuals [16]. This caricature can be used to
find the parameters of a mathematical model that best fit a
desired output. To do so, a fitness is assigned to every output
of the model as a positive real number quantifying its simi-
larity with the desired solution. The algorithm then starts
with a generation of parameters chosen at random, generat-
ing a population of outputs. The next step is to choose pairs
of outputs with a probability proportional to their fitness and
to apply the genetic operators of crossover and mutation in
the genetic space. In this way, a new population is generated
(offspring) that will be used as the new input to the algo-
rithm, restarting the process until the distance between out-
puts and the solution reach some desired threshold.

In our specific problem, a point in the parameter space
{L,A} of vocal tract lengths L=(l,,l,,...,l,) and cross sec-
tions A=(a,,a,,...,a,) is used to generate a sound time se-
ries from Eq. (2). We calculate the fast Fourier transform and
compute its numerical resonant frequencies. The correspond-
ing fitness is inversely proportional to the distance (in Hz)
between the numerical and the experimental resonant fre-
quencies. In order to apply the genetic operators, the param-
eters {L,A} are coded in a genetic space formed by a string
of numbers that result from normalizing the parameter values
with respect to their corresponding ranges, keeping the first
four decimals and putting them in a row. After a pair of
outputs is selected, the genetic operators of crossing over
(interchange of genetic information from the two parents
with respect to a random point in the string) and mutation
(random change of any number from the string) are applied,
generating a new generation and repeating the process for 30
generations (more details are in the caption of Fig. 2).

We ran our genetic algorithm in search for a configuration
of tubes displaying the complete set of the nine experimental
resonances indicated by the arrows in Fig. 1. We used n=2 to
n=20 tubes, finding only configurations for total lengths L
=180 mm, i.e., twice as long as the estimated vocal tract for
these birds.

On the other hand, vocal tracts fitting the resonant fre-
quencies within each frame (for instance, frequencies pointed
by arrows 7-9 for frame 7T3; Fig. 1) converged to total
lengths L=110 mm, consistent with the estimated length for
the bird’s vocal tract. We then ran simulations for 2=n
=20 tubes and total lengths 70=L=110 mm. In particular,
the vocal tracts obtained with n=2 tubes failed to match the
experimental frequency values, while tracts with n=3 tubes
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FIG. 2. Left: Vocal tract candidates projected in a two-
dimensional parameter space, as retrieved by the genetic algorithm
for the different frames. Circles correspond to (El lisaglay),
crosses correspond to (E[ \li.az/ay), and squares correspond to
(El:ll,,az/al) We set the genetic algorithm to generate popu-
lations of 2000 vocal tract candidates, keeping the ones whose
spectral resonances are less than 40 Hz away from the experi-
mental resonances. We penalized tube configurations displaying
resonances coinciding with low spectral intensity harmonics in
the reassigned spectrogram. We used crossing-over and mu-
tation rates of 0.85 and 0.1, respectively, and ran the algo-
rithm for about 30 generations. Right: sketch and spectra of
the final vocal tract configurations for each time frame.

The specific tube  parameters  {I;;ly:l5;14]ay;ay;a3; a4}
are T,(T5)—{35.2;36.0;3.7;23.01.0;2.1;0.4; 1.6},
Ty(Ty) —{34.3;25.1;3.7;23.6/1.0;2.0;0.6;2.0}, and T;

—{25.4;24.0;3.7;29.6/1.0;2.2;0.6;3.6}. Lengths are expressed in
mm and relative areas are normalized with respect to a;.

succeeded. Moreover, vocal tracts with n>4 tubes were ob-
tained at higher computational cost and represent just small
corrections to the overall shapes shown in Fig. 2, for n=4
tubes. In view of our numerical results, in this work we ap-
proximate the vocal tract by a series of n=4 tubes of variable
cross sections a; and lengths I; (1=<i=4). This choice is
compatible with the anatomy of other bird species. In par-
ticular, the literature reports different articulated parts for the
oscine vocal tract: trachea, glottis, oropharingeal cavity, and
beak [3,4].

The main advantage of using a genetic algorithm in our
case is that it naturally generates a number of approximate
solutions [16,17], therefore generating a population of vocal
tract candidates for each frame. In Fig. 2 (left) we show the
best solutions found by the genetic algorithm for vocal tracts
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modeled by n=4 tubes, in the two-dimensional space
(2il;,a;/ay) for the different frames. The solutions are clearly
clustered for 75, showing vocal tracts of L~82.5 mm long
with very stereotyped shapes: a second tube wider than the
first one (squares), then a constriction (crosses), and finally a
wide tube (circles). Solutions for the other time frames (T,
T,, Ty, and Ts) approximately follow this shape, presenting
wider basins of attraction.

In this way, the genetic algorithm provides us with a pool
of vocal tract candidates for each frame, such that choosing a
candidate for each time frame {(L,A)™, ... (L,A)Ts} will de-
fine an anatomical path for the vocal tract. Let us define a
transition cost C from frame 7; to T;,; as

T; T; T;
a i+1 l i l i+1
Ti"l | + | n lT"l | , (3)

i

4 |aTi_
C(T;,Ti) =2
n=1

n

and use it to find the globally lower cost path by means of
dynamical programming, i.e., using a Viterbi algorithm [18].

In the right panels of Fig. 2 we show the final spectra and
tube configurations as retrieved by our computational model
for the different time frames of the type B call. Notably, the
final configurations can be interpreted as variations of a
unique configuration: a lower vocal tract, composed of the
first two tubes (squares in Fig. 2), and an upper vocal tract
(circles in Fig. 2), separated by a constriction (crosses in Fig.
2).

From videos of the birds uttering calls from a lateral view,
we can easily identify a repetitive gesture: right after the
vocalization begins, the bird retracts its head while opening
the beak, maintaining this gesture before inverting the move-
ment to its original position at the end of the utterance [19].
We performed a video analysis with ImageJ [20], separating
the video of a call in 28 frames from where two anatomical
measures were extracted: one associated with the length of
the neck (D;) and the second with the beak opening (D,)
(Fig. 3, upper panel). A qualitative correlation can be estab-
lished between the anatomical data and the dynamics result-
ing from our vocal tract model. In particular, D, is compat-
ible with the time evolution of the lower vocal tract, and D,
is compatible with the dynamics of the cross section of the
upper vocal tract (Fig. 3, lower right inset).

V. SIMULATIONS AND DISCUSSION

Beyond the qualitative agreement between the recon-
structed vocal tract and the anatomical measures and the ob-
served bird’s movement, we used our results to synthesize
calls of the Kiskadee. In a recent work, song and air sac
pressure p, time series were measured simultaneously from
singing Kiskadees [2]. The pressure was found to be a
smooth linear function of the fundamental frequency of the
call. In order to test our model, we constructed a smooth
function pz(f) = aFj(t), proportional to the fundamental fre-
quency Fy(z) of the call of type B, such that, when feeding
Eq. (1) with p,(f) we obtained a sound compatible with the
experimental records.

Notably, the vocal tract movement proposed in this work
provides a simple explanation for both call types, depending
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FIG. 3. Upper panels: time evolution of a measure associated
with the neck extension D and beak opening D, as indicated in the
lateral view (right inset). In particular, D, is the distance from the
ventral end of the beak-skull transition to the keel and D, is the
beak gape, calculated for 28 video frames. Lower panels: reas-
signed spectrogram of a call indicating the five time frames (left)
corresponding to our model of the vocal tract configurations (right).
Compatible with the evolution of the lower vocal for our model,
direct measures of the trachea (an extensible tube located right be-
neath the bird skin), about 60 mm long for anesthetized birds, and
variations of D; of about 20 mm are compatible with our compu-
tational results.

on whether or not the fundamental frequency of the call is
high enough to tune its first harmonic to the second reso-
nance of the vocal tract: reassigned spectra of the synthetic
calls present all the spectral features observed in the experi-
mental records for both air sac pressure functions pg,(7)
=aF (1) and pz(r)=aFg(r), corresponding to calls of types
A and B respectively, as shown in Fig. 4.

In analogy with recent works that revealed a precise tun-
ing of the vocal tract to the fundamental frequency in oscines
[3,4], our analysis suggests that also the suboscine Great
Kiskadee coordinates the sound source with the vocal tract,
tending to utter sounds of high intensity by making the first
harmonic of the sound coincide with the second resonance of
the vocal tract (calls of type B). According to our results, the
bird’s strategy would consist of raising the fundamental fre-
quency by increasing the air sac pressure, and setting the
vocal tract cavities to track the syringeal first harmonic by
shortening the lower vocal tract and expanding the upper
vocal tract area, increasing the second resonance. Whenever
the first harmonic and the second vocal tract resonance co-
incide, a boost in the total sound intensity is produced, par-
ticularly around the band of 3200 Hz. On the other hand,
if the bird fails to match these two frequencies, the calls
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the model for air sac pressures p,, (left) and p,p (right). Pressure
Psp 1s enough to get the first harmonic to fall into the second vocal
tract resonance at 73, boosting the total sound intensity of the call.
The slightly lower air sac pressure p,, is not enough to reach this
second resonance, therefore loosing the boost in total sound inten-
sity, as in the recorded calls of type A.
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produce lower sound intensities, which happens—to the de-
gree of our exploration—for around 20% of the calls.

In this work we presented a simple computational algo-
rithm that makes the most of few spectral features available
from sound recordings, giving a plausible reconstruction of
the movement of vocal tract during the emission of sound by
a suboscine bird. If further validated, the picture that
emerges from our computational model shows a strong co-
ordination between the two main pieces of the avian vocal
system in a suboscine bird.
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